跳转到主要内容

1. 研究设计 1. Research Design

VULCA系统的研究设计基于三个核心问题:如何构建结构化的艺术评论框架?如何选择具有代表性的评论家和艺术作品?如何确保实验的科学性和可重复性? The research design of the VULCA system is based on three core questions: How to construct a structured art criticism framework? How to select representative critics and artworks? How to ensure the scientific rigor and reproducibility of the experiment?

2. 评论家角色建模 2. Critic Persona Modeling

为确保AI生成的评论符合历史人物的理论立场和评论风格,我们对每位评论家进行了系统的角色建模。这一过程包括文献研究、特征提取和AI提示词工程三个步骤。 To ensure that AI-generated critiques align with the theoretical stances and critical styles of historical figures, we conducted systematic persona modeling for each critic. This process comprises three steps: literature research, feature extraction, and AI prompt engineering.

3. 评论生成系统 3. Critique Generation System

评论生成采用"AI生成-人工审核-迭代优化"的混合流程,结合大语言模型的生成能力和人类专家的判断力,确保评论的质量和可信度。 Critique generation employs a hybrid workflow of "AI generation - human review - iterative optimization," combining the generative capabilities of large language models with the judgment of human experts to ensure the quality and credibility of critiques.

4. 数据标注与验证 4. Data Annotation and Validation

为确保VULCA系统生成的评论数据集的学术价值,我们实施了严格的数据标注和多层验证流程。 To ensure the academic value of the critique dataset generated by the VULCA system, we implemented rigorous data annotation and multi-layered validation procedures.

5. 系统展示与应用 5. System Exhibition and Application

为了让VULCA系统的研究成果能够被更广泛的受众理解和使用,我们开发了交互式的Web展示平台,并探索了系统在不同场景的应用潜力。 To enable broader audiences to understand and utilize the research outcomes of the VULCA system, we developed an interactive web exhibition platform and explored the system's application potential in various scenarios.